Navigation
index
modules
|
next
|
previous
|
Maja Machine Learning Framework v1.0 documentation
»
API-documentation
ΒΆ
MMLF package interface
Agents
Agent base-class
Actor-critic
Direct Policy Search (DPS)
Dyna TD
Fitted R-Max
Model-based Direct Policy Search (MBDPS)
Monte-Carlo
Option
Random
Temporal Difference Learning
TD(0)
TD(lambda) - Eligibility Traces
Environments
Single-agent environment base-class
Fully-observable Double Pole Balancing
Linear Markov Chain
Maze 2D
Maze Cliff
Mountain Car
Partially-observable Double Pole Balancing
Pinball
Seventeen and Four
Single Pole Balancing
Observables
Resources
Function Approximators
Cerebellar Model Articulation Controller
K-Nearest Neighbors
Linear Combination
Multi-layer Perceptron (MLP)
Multilinear Grid
QCON
Radial Base Function
Tabular Storage
Learning Algorithms
Eligibility Traces
Temporal Difference
Models
Grid-based
K-Nearest Neighbors
Locally Weighted Projection Regression (LWPR)
R-Max Model Wrapper
Tabular Model
Optimization
CMA-ES
Evolution Strategy
Random Search
Planner
MBDPS Planner
Prioritized sweeping
Trajectory sampling
Value iteration
Policies
Linear Policy
Multi-layer Perceptron Policy
Value Function Policy
Policy Search Methods
Fixed Parametrization
Skill Discovery
Predefined Skills
Local Graph Partitioning
Framework
World
Spaces
State
Monitor
Experiment
Filesystem
Interaction Server
Protocol
Table Of Contents
Tutorials
Learn more about...
API-documentation
MMLF package interface
Agents
Environments
Observables
Resources
Framework
Previous topic
Viewers
Next topic
MMLF package interface
This Page
Show Source
Quick search
Enter search terms or a module, class or function name.
Navigation
index
modules
|
next
|
previous
|
Maja Machine Learning Framework v1.0 documentation
»